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We consider a two-dimensional Coulomb gas of positive and negative pointlike
unit charges interacting via a logarithmic potential. The density (rather than the
charge) correlation functions are studied. In the bulk, the form-factor theory of
an equivalent sine-Gordon model is used to determine the density correlation
length. At the surface of a rectilinear plain wall, the universality of the asymp-
totic behavior of the density correlations is suggested. A scaling analysis implies
a local form of the compressibility sum rule near a hard wall. A symmetry of the
Coulomb system with respect to the Möbius conformal transformation, which
induces a gravitational source acting on the particle density, is established.
Among the consequences, a universal term of the finite-size expansion of the
grand potential is derived exactly for a disk geometry of the confining domain.
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1. INTRODUCTION AND SUMMARY

In this paper, we consider classical Coulomb systems in thermodynamic
equilibrium. For the sake of simplicity, we will restrict ourselves to the case
of a symmetric two-component plasma (TCP), i.e., a neutral system of two
species of particles of opposite unit charges s=±1, living in a n-dimen-
sional space and interacting through the Coulomb interaction sisjv(|ri − rj |).
In dimension n, the Coulomb potential v at a spatial position r ¥ Rn, induced
by a unit charge at the origin, is the solution of the Poisson equation

Dv(r)=−snd(r) (1.1)



where sn is the surface area of the n-dimensional unit sphere; s2=2p and
s3=4p. In particular,

v(r)=− ln(|r|/r0), n=2 (1.2a)

v(r)=1/|r|, n=3 (1.2b)

where, for n=2, the length scale r0 will be set to unity without any loss of
generality. For the case of pointlike particles, the singularity of v(r) at the
origin prevents the thermodynamic stability against the collapse of positive-
negative pairs of charges: in two dimensions for small enough tempera-
tures, in three dimensions for any temperature.

Let us now introduce some notations. We shall work in the grand
canonical ensemble, characterized by the fixed domain D in which the TCP
is confined, by the inverse temperature b, and by the couple of equal
(constant) particle fugacities z+=z−=z. The microscopic densities of
charge and of the total particle number are defined respectively by

r̂(r)=C
s

sn̂s(r), n̂(r)=C
s

n̂s(r) (1.3)

where n̂s(r)=;i ds, sid(r− ri) is the microscopic density of particles of
species s=± and i indexes the particles. The thermal average will be
denoted by O · · ·P. At one particle level, the total charge and particle
number densities are given respectively by

r(r)=Or̂(r)P, n(r)=On̂(r)P (1.4)

Due to the charge ± symmetry, n+(r)=n−(r)=n(r)/2. At two-particle
level, one introduces the two-body densities

nssŒ(r, rŒ)=7C
i ] j
ds, sidsŒ, sjd(r− ri) d(rŒ− rj)8

=On̂s(r) n̂sŒ(rŒ)P−On̂s(r)P dssŒd(r− rŒ) (1.5)

Clearly, n++(r, rŒ)=n−−(r, rŒ) and n+− (r, rŒ)=n−+(r, rŒ). The correspond-
ing Ursell functions read

UssŒ(r, rŒ)=nssŒ(r, rŒ)−ns(r) nsŒ(rŒ) (1.6)
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They will occur in the charge and density combinations

Ur(r, rŒ)=C
s, sŒ
ssŒUssŒ(r, rŒ) (1.7a)

Un(r, rŒ)=C
s, sŒ

UssŒ(r, rŒ) (1.7b)

respectively. The truncated charge-charge and density-density structure
functions are defined by

Sr(r, rŒ)=Or̂(r) r̂(rŒ)P−Or̂(r)POr̂(rŒ)P (1.8a)

Sn(r, rŒ)=On̂(r) n̂(rŒ)P−On̂(r)POn̂(rŒ)P (1.8b)

respectively. It is useful to consider also the pair correlation functions

hssŒ(r, rŒ)=
nssŒ(r, rŒ)

ns(r) nsŒ(rŒ)
−1 (1.9)

in their charge and density combinations, defined by

hr(r, rŒ)=
1
4 C
s, sŒ
ssŒhssŒ(r, rŒ) (1.10a)

hn(r, rŒ)=
1
4 C
s, sŒ

hssŒ(r, rŒ) (1.10b)

As any Coulomb system, the TCP admits a description in the
Debye–Hückel (high-temperature) limit. (1)

In two dimensions and for the case of pointlike charged particles, the
particle density n is an ‘‘irrelevant’’ variable which only scales the distance.
The complete description of the bulk thermodynamics is available in the
whole range of inverse temperatures b < 2 where the plasma is stable
against the collapse of positive-negative pairs of charges. The exact equa-
tion of state

bp=n(1−b/4) (1.11)

where p is the pressure and n the total particle density, has been known for
a very long time. (2, 3) The evaluation of other thermodynamic quantities
(free energy, internal energy, specific heat, etc.) can be based on an explicit
density-fugacity (n−z) relationship. This relationship was obtained only
recently (4) via a mapping onto a classical two-dimensional sine-Gordon
theory. Surface thermodynamics (surface tension) of the two-dimensional
TCP in contact with a rectilinear dielectric wall was derived for specific
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boundary conditions in refs. 5 and 6. The large-distance behavior of the
bulk charge-charge correlation function was given in ref. 7 by exploring the
form-factor method for the equivalent sine-Gordon theory. Exact formulae
for pair correlations for an arbitrary interparticle distance are available just
at the collapse point b=2, (8, 9) which corresponds to the free-fermion point
of an equivalent Thirring model.

The long-range tail of the Coulomb force causes screening, and thus
give rise to exact constraints for the charge correlations for any value of b
in the conducting regime (for a review, see ref. 10).

In the bulk, the charge structure function Sr(r, rŒ)=Sr(|r− rŒ|) obeys
the Stillinger–Lovett sum rules, (11) namely the zeroth-moment condition

F dr Sr(r)=0 (1.12)

and the second-moment condition

F dr |r|2 Sr(r)=−
n

bp(n−1)
, n=2, 3 (1.13)

Hereinafter, without any loss of generality, we put the dielectric constant E
of a medium in which the plasma lives equal to unity.

Let us now introduce a semi-infinite TCP which occupies the half
space x > 0, and denote by y the set of (n−1) coordinates normal to x. The
plane at x=0 is a hard wall impenetrable to the particles. The half-space
x < 0 is assumed to be filled with a material of dielectric constant EW:
a particle of unit charge at the point r=(x > 0, y) has an electric image of
charge (1− EW)/(1+EW) at the point rg=(−x, y). (12) Due to invariance
with respect to translations along the wall and rotations around the x
direction,

Sr(r, rŒ)=Sr(x, xŒ; |y−yŒ|)=Sr(xŒ, x; |y−yŒ|) (1.14)

The electroneutrality condition (1.12) takes the form

F
.

0
dxŒ F dy Sr(x, xŒ; y)=0 (1.15)

The Carnie and Chan (13) generalization of the second-moment condition
(1.13) results in the dipole sum rule (14, 15)

F
.

0
dx F

.

0
dxŒ F dy (xŒ−x) Sr(x, xŒ; y)=−

1
2bp(n−1)

, n=2, 3
(1.16)
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The asymmetry of the screening cloud of a charged particle sitting near the
wall induces a long-range tail in the charge correlation along the wall, (16, 17)

except of the cases EW=0 (ideal dielectric wall) and EW=. (ideal conduc-
tor wall) which will be excluded from our considerations. One expects an
asymptotic power-law decay

Sr(x, xŒ; y) ’
fr(x, xŒ)

|y|n
, |y| Q. (1.17)

where fr(x, xŒ) obeys the sum rule (18, 19)

F
.

0
dx F

.

0
dxŒ fr(x, xŒ)=−

EW

2b[p(n−1)]2 , n=2, 3 (1.18)

Recently, (20) it was proven that for any value of x \ 0 it holds

F
.

0
dxŒ F dy(xŒ−x) Sr(x, xŒ; y)=

1
EW
p(n−1) F dxŒ fr(x, xŒ), n=2, 3

(1.19)

When both sides of (1.19) are integrated over x from 0 to ., it is clear that
the sum rule (1.18) for fr is a direct consequence of the dipole sum rule
(1.16), and vice versa.

As concerns the density correlation function, according to the general
theory of fluids, (21) the zeroth moment of the bulk density structure func-
tion Sn(r, rŒ)=Sn(|r− rŒ|) is related to the isothermal compressibility

qb=
1
n
1“n
“p
2
b

(1.20)

via

1
n2 F dr Sn(r)=

1
b
qb (1.21)

In two dimensions and for the case of pointlike charged particles, with
the use of the exact equation of state (1.11), one gets explicitly (22)

F d2r Sn(r)=
n

1−(b/4)
(1.22)

Recently, using the technique of a renormalized Mayer expansion, (23) and
in particular a remarkable ‘‘cancellation property’’ of specific families of
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renormalized diagrams, (24) the second moment of Sn was shown to have a
simple value (25)

F d2r |r|2 Sn(r)=
1

12p(1−(b/4))2 (1.23)

The universal finite-size properties of two-dimensional critical systems
with short-range interactions among constituents are well understood
within the principle of conformal invariance. (26–30) For a finite system of
characteristic size R, at a critical point, the dimensionless grand potential
bW=−ln X (X is the grand partition function) has a large-R expansion of
the form

bW=AR2+BR−
cq
6

ln R+const+·· · (1.24)

The coefficients A and B of the bulk and surface parts are non-universal.
The coefficient of the ln R-term is universal, dependent only on the con-
formal anomaly number c of the critical theory and on the Euler number q
of the manifold on which the system is confined. In general, q=2−2h−b,
where h is the number of handles and b the number of boundaries of the
manifold (q=2 for a sphere, q=1 for a disk, q=0 for an anulus or a
torus). The grand potential of the two-dimensional TCP is supposed to
exhibit a universal finite-size correction of type (1.24) at any temperature of
the conducting regime. Plausible, but not always rigorously justified,
arguments for a critical-like behavior were first given for Coulomb gases
with periodic boundary conditions, (31) then for Coulomb systems confined
to a domain by plain hard walls, (32) by ideal-conductor walls (33) and finally
by ideal-dielectric boundaries. (34, 35) The explicit checks were done at the
exactly solvable b=2 inverse temperature for various geometries of con-
fining domains. Only very recently, (36) a direct derivation of the universal
finite-size correction term was done for the specific case of the TCP living
on the surface of a sphere of radius R. By combining the method of
stereographic projection of the sphere onto an infinite plane with the linear
response theory, the prefactor to the universal ln R correction term was
related to the bulk second moment of the density structure function Sn,
Eq. (1.23). The obtained result confirms the prediction (1.24) for a
Coulomb system, as if we had c=−1, in full agreement with heuristic
approaches and exact results at b=2. (31–35)

In general, due to screening phenomena, the sum rules for the charge
structure function Sr are not modified by a short-distance regularization of
the Coulomb potential. On the other hand, the moments of the density
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structure function Sn depend on the particular form of the short-range
particle interactions. For the case of two dimensions and the pointlike
character of charged particles on which we shall concentrate in this work,
the zeroth-moment (1.12) and the second-moment (1.13) Stillinger–Lovett
conditions for Sr have their exact counterparts (1.22) and (1.23), respec-
tively, for Sn. Instead of screening, the scaling properties and the critical-
like state are relevant. The aim of this paper is to document how these
features of the two-dimensional Coulomb fluids manifest themselves in the
density correlation functions (in the bulk or close to a boundary) and in the
universal finite-size correction term of the grand potential.

Section 2 is devoted to the density correlations in the bulk. The
Debye–Hückel bQ 0 limit is presented in Section 2.1, the exactly solvable
b=2 case is treated in Section 2.2. A general analysis, based on the form-
factor theory of the equivalent sine-Gordon model in analogy with ref. 7, is
given in Section 2.3. For comparison, the corresponding formulae for the
charge correlations are presented, too.

Density correlations near a rectilinear hard wall are analysed in
Section 3. In Section 3.1, we present the results of the Debye–Hückel bQ 0
limit. Section 3.2 deals with the exactly solvable b=2 case for the plain
hard wall with EW=1. In comparison with formula (1.17) for Sr taken at
dimension n=2, a more rapid, but still power-law, asymptotic decay of Sn

along the boundary is observed,

Sn(x, xŒ; y) ’
fn(x, xŒ)

y4 (1.25)

In Section 3.3, at least for the considered plain hard wall, the universal
form of the function fn(x, xŒ) at the boundary x=xŒ=0 is conjectured,

fn(0, 0)=
1

2p2
(1.26)

Here, we also suggest explicit forms of fr(x, xŒ) and fn(x, xŒ) for any value
of b.

In Section 4, we explore the scaling properties of the two-dimensional
TCP confined to a disk of radius R, for the sake of simplicity by an
uncharged plain hard wall. We present some important formulae which are
used in the subsequent sections. The rectilinear wall is obtained as the
limiting R Q. case of the disk. As a by-product of the formalism, we
derive a local form of the compressibility (zeroth-moment) sum rule (1.22)
for Sn near the rectilinear hard wall.
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In Section 5, by using a specific (namely Möbius) conformal trans-
formation of particle coordinates we show how the two-dimensional TCP
can be mapped onto the one under the action of a gravitational source,
acting in the same way on both positively and negatively charged particles.
The mapping implies a new sum rule for Sn in the disk geometry. In this
section, the new sum rule is used to derive the counterpart of the bulk
second-moment sum rule for Sn (1.23) near a rectilinear wall.

Section 6 deals with the universal finite-size correction ln R-term for
the disk geometry. Using the new sum rule for Sn derived in Section 5, the
universal term is confirmed at any value of b. This term has already been
calculated at b=2 in ref. 32.

A brief recapitulation and some concluding remarks are given in
Section 7.

2. BULK DENSITY CORRELATIONS

2.1. Weak Coupling

In this subsection, we derive the asymptotic form of the density corre-
lation function hn(r) in the bulk, at the lowest order in b. It should be
noted that b-expansions of correlation functions must be taken for a fixed
value of the inverse Debye length o=(2pbn)1/2, since o only fixes the
length scale.

In the present case of a charge-symmetrical two-component plasma,
the ordinary Ornstein-Zernike (OZ) equation split into two independent
relations for the charge-charge and density-density functions (25)

hr=cr+cr f n f hr (2.1a)

hn=cn+cn f n f hn (2.1b)

respectively, where f denotes a convolution product. In the renormalized
Mayer expansion, (4, 25) at the lowest order in b, the charge direct correlation
function is given by

cr(1, 2)= " – – –# =−bv(1, 2) (2.2)
1 2

with v being the Coulomb potential, and the density direct correlation
function is given by the Meeron diagram

cn(1, 2)= =
1
2!

K2(1, 2) (2.3)

330 Šamaj and Jancovici



The wavy line denotes the renormalized bond K (sum of chains). In the
bulk, K(r)=−bK0(or), where K0 is a modified Bessel function.

Inserting (2.2) into (2.1a), one gets the definition of K. This is why

hr(r)=−bK0(or) ’ −b 1 p
2or
21/2 exp(−or) (2.4)

since K0(x) has the asymptotic form [p/(2x)]1/2 exp(−x). In the OZ rela-
tion (2.1b), where cn (2.3) is of order b2, the convolution term is easily seen
to be of higher order b3. Thus, at lowest order in b, hn(r)=cn(r),

hn(r)=
b2

2
K2

0(or) ’
pb2

4or
exp(−2or) (2.5)

The same analysis can be done in dimension n=3, where

K(r)=−
b

r
exp(−or) (2.6)

where now o=(4pbn)1/2. (37) In this case, the large-r behavior is not
touched by an inevitable short-distance regularization of the Coulomb
potential.

2.2. b=2

When b=2, for a fixed fugacity z, the particle density n Q. and
{hr, hn} Q 0. However, the Ursell functions Ur=n2hr and Un=n2hn are
exactly known (8, 9) as

Ur(r)=−2 1m
2

2p
22 [K2

1(mr)+K2
0(mr)] (2.7)

and

Un(r)=2 1m
2

2p
22 [K2

1(mr)−K2
0(mr)] (2.8)

where m=2pz (z is the fugacity). Replacing the modified Bessel functions
by their asymptotic expansions

K0(x)=1 p
2x
21/2 e−x 51−

1
8x

+· · · 6 (2.9a)

K1(x)=1 p
2x
21/2 e−x 51+

3
8x

+· · · 6 (2.9b)
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gives the asymptotic form of Ur(r) as

Ur(r) ’ −
m3

2pr
exp(−2mr) (2.10)

and the asymptotic form of Un(r) as

Un(r) ’
m2

4pr2 exp(−2mr) (2.11)

2.3. Form-Factor Analysis

We now determine the large-distance behavior of hn(r) in the whole
stability interval of inverse temperatures 0 < b < 2 via a form-factor analysis.

The grand partition function of the TCP can be turned into (see, e.g.,
ref. 38)

X=
> Df exp(−S(z))
> Df exp(−S(0))

(2.12)

where

S(z)=F d2r 5 1
16p

(Nf)2−2z cos(bf)6 (2.13a)

b2=b/4 (2.13b)

is the Euclidean action of the classical sine-Gordon model. In the sine-
Gordon representation, the density of particles of one sign s=± is

ns=zsOe isbfP (2.14)

where O · · ·P denotes the averaging over the sine-Gordon action (2.13), two-
body densities (1.5) are expressible as follows

ns, sŒ(r, rŒ)=zszsŒOe isbf(r)e isŒbf(rŒ)P (2.15)

etc. The parameter z=z+=z− , which is the fugacity renormalized by a
(diverging) self-energy term, gets a precise meaning when one fixes the
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normalization of the cos-field. For the TCP, (4) this normalization is given
by the short-distance behavior

n+− (r, rŒ) ’ z+z− |r− rŒ|−b as |r− rŒ| Q 0 (2.16)

dominated by the Boltzmann factor of the Coulomb potential. The corre-
sponding formula in the sine-Gordon picture

Oe ibf(r)e−ibf(rŒ)P ’ |r− rŒ|−4b
2

as |r− rŒ| Q 0 (2.17)

is known in quantum field theory as the conformal normalization.
The sine-Gordon model (2.13) is massive in the region 0 < b2 < 1

(0 < b < 4). It is integrable: (39) its particle spectrum consists of one soliton-
antisoliton pair of equal masses M and of soliton-antisoliton bound states
(‘‘breathers’’) {Bj; j=1, 2,... < 1/t}. Their number depends on the inverse
of the parameter

t=
b2

1−b2
1= b

4−b
2 (2.18)

The mass of the Bj-breather is given by

mj=2M sin 1pt
2

j2 (2.19)

and the breather disappears from the spectrum just when mj=2M. Under
the conformal normalization (2.17), the relationship between the soliton
mass M and the parameter z was established in ref. 40,

z=
C(b2)

pC(1−b2)
5M`p C((1+t)/2)

2C(t/2)
62−2b2

(2.20)

where C stands for the Gamma function. Using the Thermodynamic Bethe
ansatz, the specific quantity

lim
VQ.

1
V
ln X=

m2
1

8 sin(pt)
(2.21)

was found in ref. 41. As a thermodynamic result, (4)

n=
M2

4(1−b2)
tan 1pt

2
2 (2.22)
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Note that as b approaches the collapse value 2, for a fixed z, M is finite
and n Q. as it should be.

For the underlying sine-Gordon theory, the two-point truncated cor-
relation functions of local operators Oa (a is a free parameter) can be
formally written as an infinite convergent series over multi-particle inter-
mediate states,

OOa(r) OaŒ(rŒ)PT= C
.

N=1

1
N!

C
E1,..., EN

F
.

−.

dh1 · · ·dhN
(2p)N Fa(h1,..., hN)E1 · · · EN

× EN · · · E1FaŒ(hN,..., h1) exp 1 −|r− rŒ| C
N

j=1
mEj cosh hj
2

(2.23)

where E indexes the particles [E=+(−) for a soliton (antisoliton) and E=j
for a breather Bj (j=1, 2,...)] and h is the particle rapidity. The form
factors

Fa(h1,..., hN)E1 · · · EN=O0| Oa(0) |ZE1 (h1),..., ZEN (hN)P (2.24a)
EN · · · E1FaŒ(hN,..., h1)=OZEN (hN),..., ZE1 (h1)| OaŒ(0) |0P (2.24b)

are the matrix elements of the operator at the origin, between an N-particle
in-state (as a linear superposition of free one-particle states |ZE(h)P) and
the vacuum.

In the limit |r− rŒ| Q., the dominant contribution to the truncated
correlation function in (2.23) comes from a multi-particle state with the
minimum value of the total particle mass ;N

j=1 mEj , at the point of vanish-
ing rapidities hj Q 0. Due to topological reasons, solitons and antisolitons
coexist in pairs, the total mass of the pair being 2M. The breathers Bj with
masses given by relation (2.19) are lighter and therefore, when they exist
and their form-factor contributions do not vanish, they are the best candi-
dates for governing the asymptotic behavior of the two-point correlation
function.

The form factors of an exponential operator Oa=exp(iaf(r)) for
various combinations of particles were calculated in refs. 42–44. The one-
breather form factors, which do not depend on the rapidity, posses the
following general structure

O0| e isbf |Bj(h)P=OBj(h)| e isbf |0P3 s jOe isbfP sin 1pj
2
2 (2.25)
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where the full dependence on s=±1 is presented. These form factors are
nonzero only if j = odd integer. Due to the invariance of the sine-Gordon
action (2.13) with respect to the transformation fQ −f, it holds
Oe ibfP=Oe−ibfP. With regard to (2.15), the total contribution of a given
breather Bj ( j odd) to the charge hr and density hn correlation functions
(1.10) is proportional to

hr 3 C
s, sŒ=±1

ssŒO0| e isbf |Bj(h)POBj(h)| e isŒbf |0P (2.26a)

hn 3 C
s, sŒ=±1

O0| e isbf |Bj(h)POBj(h)| e isŒbf |0P (2.26b)

Inserting (2.25) into (2.26) one observes that one-breather states con-
tribute only to hr. Using (2.22) in (2.19), the mass of the lightest (elemen-
tary) B1-breather is

m1=o 5
sin(pb/(4−b))
pb/(4−b)

61/2 (2.27)

where o denotes as usually the inverse Debye length. At asymptotically
large r, (2.23) gives

hr(r) 3 exp(−m1r), 0 < b < 2 (2.28)

in agreement with the bQ 0 limit (2.4). At the free-fermion point b=2, the
B1-breather disappears, and the soliton-antisoliton pair with mass 2M
determines the correlation length:

Ur(r) 3 exp(−2Mr), b=2 (2.29)

From (2.20), M=2pz=m at b=2 (b2=1/2), and the asymptotic form
(2.10) is reproduced. Note that from (2.19) m1 Q 2M as bQ 2, and so the
inverse correlation length varies continuously near b=2. The explicit
inverse-power law dependence of prefactors of asymptotic formulae (2.28)
and (2.29) was presented in ref. 7.

At small b, the large-distance behavior of hn is determined by the two-
B1-breather state. Indeed, the corresponding form factor (7, 43)

O0| e isbf |B1(h2), B1(h1)P=OB1(h2), B1(h1)| e isbf |0P3 s2Oe isbfP (2.30)

(where the full dependence on s=±1 is given) has the necessary sQ −s
symmetry and thus contributes to hn. It follows from (2.19) that the mass
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of two B1-breathers, 2m1, is smaller than the one of the soliton-antisoliton
pair, 2M, in the region b < 1. Consequently,

hn(r) 3 exp(−2m1r), 0 < b < 1 (2.31)

at large distance r, in agreement with the bQ 0 limit (2.5). It stands to
reason that subsequently the soliton-antisoliton pair determines the large-
distance asymptotic of hn,

hn(r) 3 exp(−2Mr), 1 [ b [ 2 (2.32)

where the b-dependence of M can be deduced from Eq. (2.22). At b=2,
the result (2.11) is recovered. We omit a tedious calculation of the inverse-
power law dependence of prefactors on distance in (2.31) and (2.32).

One concludes that, for a given b < 2, the large-distance exponential
decay of hn is faster than the one of hr. Although the correlation lengths
depend continuously on b for both hr and hn, the derivative of the density
correlation length with respect to b is discontinuous at b=1. The correla-
tion lengths coincide just at the collapse b=2 point, where, as is clear from
the exact formulae (2.10) and (2.11), hr and hn differ from one another only
by inverse-power law prefactors.

3. DENSITY CORRELATIONS NEAR A RECTILINEAR HARD WALL

3.1. Weak Coupling

Like in Section 2.1, at the lowest order in b, the direct correlation
functions cr and cn are given by relations (2.2) and (2.3), respectively.
However, now, the wavy line K, the sum of the chain diagrams, is a func-
tion K(x, xŒ; |y−yŒ|) which must be calculated with the wall taken into
account. An arbitrary EW value can be assumed for the dielectric constant
of the wall material. At the lowest order in b, K can be computed with the
density n(x) replaced by its bulk value n. This K has been implicitly con-
sidered in refs. 17 and 20, where it was used as the charge correlation func-
tion, hr=K. Except in the cases EW=. (ideal conductor wall) and EW=0
(ideal dielectric wall), K has an algebraic decay, for large |y−yŒ|, of the
form − EW/[pn(y−yŒ)2] exp[−o(x+xŒ)]. Therefore,

Ur(x, xŒ; |y−yŒ|)=n2K(x, xŒ; |y−yŒ|) ’ −
EWn

p(y−yŒ)2 exp[−o(x+xŒ)]
(3.1)
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The Meeron diagram (2.3) gives for the asymptotic form of the density
Ursell function

Un(x, xŒ; |y−yŒ|)=n2cn(x, xŒ; |y−yŒ|) ’
E2W

2p2(y−yŒ)4 exp[−2o(x+xŒ)]
(3.2)

These formulae can be generalized to n=2, 3 dimensions:

Ur(x, xŒ; |y|) ’ −
EWn

(n−1) p |y|n
exp[−o(x+xŒ)] (3.3)

Un(x, xŒ; |y|) ’
E2W

2(n−1)2 p2 |y|2n
exp[−2o(x+xŒ)] (3.4)

with o=[2(n−1) pbn]1/2.

3.2. b=2

When b=2 and EW=1, the charge and density Ursell functions can be
expressed in terms of auxiliary functions gs+, where s=± , as (9)

Ur(x, xŒ; |y−yŒ|)=−2m2[|g−+(x, xŒ; y−yŒ)|2+|g++(x, xŒ; y−yŒ)|2]
(3.5a)

Un(x, xŒ; |y−yŒ|)=2m2[|g−+(x, xŒ; y−yŒ)|2−|g++(x, xŒ; y−yŒ)|2]
(3.5b)

where m=2pz (z is the fugacity). It will now be shown that, near the wall,
each g function has a slow algebraic decay for large |y−yŒ|.

Each g is a sum of two terms

gs+(x, xŒ; y−yŒ)=gbulk
s+ (r− rŒ)+gwall

s+ (x, xŒ; y−yŒ) (3.6)

The first term in the rhs of (3.6) is the same as in the bulk. It has a fast
(exponential) decay and does not contribute to the asymptotic form, which
is entirely due to the second term. This second term is determined by its
Fourier transform as

gwall
s+ (x, xŒ; y−yŒ)=F

.

−.

dl
2p

g̃wall
s+ (x, xŒ; l) exp[il(y−yŒ)] (3.7)
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These Fourier transforms are

g̃wall
++(x, xŒ; l)=−

m
2k

exp[−k(x+xŒ)], l < 0 (3.8a)

g̃wall
++(x, xŒ; l)=

m(k−l)
2k(k+l)

exp[−k(x+xŒ)], l > 0 (3.8b)

g̃wall
−+(x, xŒ; l)=−

k+l
2k

exp[−k(x+xŒ)], l < 0 (3.8c)

g̃wall
−+(x, xŒ; l)=

k−l
2k

exp[−k(x+xŒ)], l > 0 (3.8d)

where k=(m2+l2)1/2. Thus, g̃wall
s+ (x, xŒ; l) is a function of l singular at

l=0. This singularity generates in gwall
s+ (x, xŒ; y−yŒ) an algebraic decay

at large |y−yŒ|. The corresponding asymptotic expansion is obtained by
splitting the integral in (3.7) into the l < 0 and l > 0 contributions, and
evaluating each contribution by successive integration by parts. For
instance, calling for simplicity N(l) the function g̃wall

s+ (x, xŒ; l) when l < 0,
one obtains the asymptotic expansion

F
0

−.

dl
2p

N(l) exp[il(y−yŒ)]

=
1

2p
3 − i

y−yŒ
N(0)+

1
(y−yŒ)2 NŒ(0)+

i
(y−yŒ)3 Nœ(0)+· · · 4 (3.9)

A similar expansion holds for P(l), the function g̃wall
s+ (x, xŒ; l) when l > 0.

Using these expansions finally gives

|g++(x, xŒ; y−yŒ)|2

=
1

4p2
3 1

(y−yŒ)2+5−
1

m2+
2(x+xŒ)

m
6 1

(y−yŒ)4+·· · 4 exp[−2m(x+xŒ)]
(3.10a)

and

|g−+(x, xŒ; y−yŒ)|2=
1

4p2
3 1

(y−yŒ)2+
2(x+xŒ)

m(y−yŒ)4+·· · 4 exp[−2m(x+xŒ)]
(3.10b)
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The dominant term in Eqs. (3.10), of order 1/(y−yŒ)2, determines the
asymptotic form of the charge Ursell function (3.5a), (20)

Ur(x, xŒ; |y−yŒ|) ’ −1m
p
22 1

(y−yŒ)2 exp[−2m(x+xŒ)] (3.11)

But this dominant term cancels out in the expression (3.5b) of the density
Ursell function, the asymptotic form of which is governed by the sub-
dominant term in Eqs. (3.10), of order 1/(y−yŒ)4. The final result is

Un(x, xŒ; |y−yŒ|) ’
1

2p2(y−yŒ)4 exp[−2m(x+xŒ)] (3.12)

3.3. Conjectures

The functions Ur, n(r) and Sr, n(r) differ from one another only by a
term containing d(r), which has no effect on their identical large-distance
behavior. With regard to the definitions of the asymptotic characteristics fr
(1.17) and fn (1.25), the results of the two previous subsections can be
summarized, for n=2 dimensions and EW=1, by

fr(x, xŒ)=−
n
p
exp[−o(x+xŒ)], bQ 0 (3.13a)

fr(x, xŒ)=−1m
p
22 exp[−2m(x+xŒ)], b=2 (3.13b)

and

fn(x, xŒ)=
1

2p2
exp[−2o(x+xŒ)], bQ 0 (3.14a)

fn(x, xŒ)=
1

2p2
exp[−2m(x+xŒ)], b=2 (3.14b)

The explicit forms of fr and fn in the two exactly solvable cases have
an appealing feature: both charge and density functions factorize in x and
xŒ particle coordinates. This can be intuitively explained by the fact that one
studies the leading asymptotic y Q. limit of pair correlations along the
wall, in which probably there is no correlation between x and xŒ coordinates
of particles. In both bQ 0 and b=2 cases, the decay of factorized func-
tions into the bulk has the exponential form obtained for the corresponding
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bulk functions in Sections 2.1 and 2.2. With regard to the general form-
factor analysis in Section 2.3, it is therefore tempting to write down

fr(x, xŒ)=−
m2

1

2bp2
exp[−m1(x+xŒ)], 0 < b [ 2 (3.15)

with the mass m1 of the elementary B1-breather given by formula (2.27).
This formula reproduces correctly the two solvable cases (3.13) and reflects
the dominance of the lightest particle in the sine-Gordon spectrum in the
large-distance behavior of charge correlation functions. The value of the
prefactor in (3.15) is fixed by the sum rule (1.18) with n=2 and EW=1. As
concerns the density asymptotic characteristic fn(x, xŒ) (3.14), the prefactor
of the exponential acquires the same value in the bQ 0 limit as well as at
b=2, what motivates us to suggest, taking into account large-distance
asymptotics (2.31) and (2.32), that

fn(x, xŒ)=
1

2p2
exp[−2m1(x+xŒ)], 0 < b < 1 (3.16a)

fn(x, xŒ)=
1

2p2
exp[−2M(x+xŒ)], 1 < b [ 2 (3.16b)

In particular, at the boundary x=xŒ=0, fn(0, 0) is supposed to have a
universal value 1/(2p2) independent of b. We were not able to give some
general argument for such a result.

We emphasize that formulae (3.15) and (3.16) are only conjectures
which must be verified, for example, within a systematic weak-coupling
expansion in the presence of a dielectric wall. Such calculations for the
correlation functions are tedious and far from simple, and will not be pre-
sented here.

4. SCALING ANALYSIS IN A DISK

Under the neutrality constraint N+=N− , the grand partition function
of the two-dimensional symmetric TCP in a domain D, bounded by an
impermeable hard wall (for simplicity, uncharged and with no image
forces, EW=1) is written as

X= C
.

N=0

z2N

(N!)2 QN, N (4.1a)

QN, N=F
D
D
N

i=1
d2pi d2ni W (N)

b (p, n) (4.1b)

340 Šamaj and Jancovici



where QN, N is the configuration integral and

W (N)
b (p, n)=

<N
(i < j)=1 |pi −pj |b |ni −nj |b

<N
i, j=1 |pi −nj |b

(4.2)

denotes the interaction Boltzmann weight of N particles of charge +1 with
coordinates {pi}

N
i=1 and N particles of charge −1 with coordinates {ni}

N
i=1.

From the explicit representations

On̂(r)P=
1
X

C
.

N=0

z2N

(N!)2 F
D
D
N

i=1
d2pi d2ni W (N)

b (p, n)

× C
N

i=1
[d(r−pi)+d(r−ni)] (4.3a)

On̂(r) n̂(rŒ)P=
1
X

C
.

N=0

z2N

(N!)2 F
D
D
N

i=1
d2pi d2ni W (N)

b (p, n)

× C
N

i=1
[d(r−pi)+d(r−ni)] C

N

j=1
[d(rŒ−pi)+d(rŒ−ni)]

(4.3b)

etc., one readily gets the important relations

F
D
d2r n(r)=z

“

“z
ln X (4.4a)

F
D
d2rŒ Sn(r, rŒ)=z

“

“z
n(r) (4.4b)

etc.
The domain of interest in this section is the disk of radius R,

D={|r| [ R}. When one rescales the particle coordinates as pi=Rp −i and
ni=Rn −i, it becomes evident that X(z, R) depends only on the dimen-
sionless combination z2R4−b. As a consequence,

R
“X

“R
=12−

b

2
2 z “X
“z

(4.5)

If one accepts the expected value of c=−1 in the universal ln R-term of the
large-R expansion (1.24) (q=1 for the disk), ln X=−bW takes the form

ln X(z, b, R)=(pR2) bp−(2pR) bc− 1
6 ln(z1/(2−b/2)R)+const+·· · (4.6)
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where

bp=fV(b) z1/(1−b/4) (4.7)

p is the bulk pressure, and

bc=fS(b) z1/(2−b/2) (4.8)

c is the surface tension. The bulk particle density n is given by the equation

n=z
“(bp)
“z

=
1

1−(b/4)
bp (4.9)

which gives the equation of state (1.11).
The particle density n(r, R) depends on both the radius R and the dis-

tance 0 [ r [ R from the center of the disk. By using the above mentioned
scaling transformation of particle coordinates, one has

n(r, R)=z1/(1−b/4)g(z1/(2−b/2)r, z1/(2−b/2)R) (4.10)

with an unknown function g. The origin can be moved to the boundary via
the coordinate transformation x=R−r. In order to distinguish between
the two different functions, we will use the obvious notation

nR(x) — n(R−x, R) (4.11)

Similarly as in (4.10),

nR(x)=z1/(1−b/4)ḡ(z1/(2−b/2)x, z1/(2−b/2)R) (4.12)

with an unknown function ḡ different from g. The definition (4.11) implies

“n(r, R)
“r

=−
“nR(x)
“x

(4.13a)

“n(r, R)
“R

=
“nR(x)
“x

+
“nR(x)
“R

(4.13b)

The transition from the disk of radius R to a rectilinear hard wall can be
understood as the limiting R Q. procedure, with limRQ. nR(x)=n(x)
being the particle density at a finite distance x \ 0 from the plain hard wall.

It is evident that the derivative of >R0 <N
i=1 d

2pi d2ni W(N)
b (p, n) with

respect to R is 2pR >R0 <N
i=1 d

2pi d2ni W(N)
b (p, n) ;N

i=1 [d(pi −R)+d(ni −R)]
where R is a position vector of any point at the disk boundary. Hereinafter,
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the integration range from 0 to R formally means that 0 [ {|pi |, |ni |} [ R.
As a result,

“

“R
ln X=2pRnR(0) (4.14)

With regard to Eqs. (4.6) and (4.9), the finite-size correction of the particle
density at the boundary reads

nR(0)=11−
b

4
2 n−

1
R

(bc)−
1

12pR2+·· · (4.15)

The well-known contact theorem n(0)=[1−(b/4)] n (45, 46) results as the
R Q. limit of Eq. (4.15).

By using the same procedure for Xn(r, R) one arrives at

“

“R
[Xn(r, R)]=XR F

p

−p
dj[On̂(r) n̂(R, j)P−n(r) d(r−R)] (4.16)

where, in polar coordinates, R=(R, j). Using Eq. (4.13b) and after some
simple algebra, one can pass from (4.16) to

“nR(x)
“x

+
“nR(x)
“R

=R F
p

−p
dj Un(r, R) (4.17)

In the limit R Q. and for a fixed x, nR(x)=n(x)+O(1/R), so
limRQ. “nR(x)/“R Q 0. When one introduces the y-coordinate as follows
y=Rj, Eq. (4.17) takes the form

“n(x)
“x

=F
.

−.
dy Un(0, x; y) (4.18)

and we recover the two-dimensional version of the WLMB equation. (47, 48)

We are now ready to take advantage of the exact grand-canonical
relation (4.4b). With regard to the scaling form of nR(x), Eq. (4.12), it
holds

12−
b

2
2 z “nR(x)

“z
=2nR(x)+x

“nR(x)
“x

+R
“nR(x)
“R

(4.19)
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In the limit R Q., the last term on the rhs of Eq. (4.19) vanishes. Inserting
the resulting z“n(x)/“z into (4.4b), one finally obtains

F
.

0
dxŒ F

.

−.
dy Sn(x, xŒ; y)=

n(x)
1−(b/4)

+
x

2[1−(b/4)]
“n(x)
“x

(4.20)

This is the local form of the compressibility sum rule in the presence of a
plain hard wall. Indeed, in the limit x Q., n(x) Q n and “n(x)/“x Q 0
faster than any power-law due to screening. Consequently, in the bulk,
(4.20) reproduces (1.22). It is straightforward to prove that Eq. (4.20) is
valid for any value of EW.

5. MÖBIUS INVARIANCE AND SUM RULES

We now consider the TCP confined to a two-dimensional domain D,
and study the action of the Möbius conformal transformation

zŒ=
az+b
cz+d

, z=
dzŒ−b

−czŒ+a
(5.1)

(with free complex parameters ad−bc ] 0) of complex particle coordinates
(z, z̄) on the configuration integral QN, N (4.1b). Under the conformal
transformation (5.1), the domain D is mapped onto the one denoted as DŒ,
the surface element dz dz̄ is written as

dz dz̄=
(ad−bc)(ād̄− b̄c̄)
(a−czŒ)2 (ā− c̄z̄ Œ)2 dzŒ dz̄ Œ (5.2)

the square of the distance between two particles takes the form

|zi −zj |2=
(ad−bc)(ād̄− b̄c̄)

(a−cz −i)(ā− c̄z̄ −i)(a−cz −j)(ā− c̄z̄ −j)
|z −i −z −j |

2 (5.3)

so that the Boltzmann factor (4.2) reads

W (N)
b (p, n)=[(ad−bc)(ād̄− b̄c̄)]−Nb/2

× D
N

i=1
[(a−cp −i)(ā− c̄p̄ −i)]

b/2 [(a−cn −i)(ā− c̄n̄ −i)]
b/2 W(N)

b (pŒ, nŒ)
(5.4)
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Finally, putting c=c̄=1 and a=r0, ā=r̄0, one finds

F
D
D
N

i=1
d2pi d2ni W (N)

b (p, n)

=[(b−r0d)(b̄− r̄0d̄)]N[2−(b/2)] F
DŒ

D
N

i=1

d2pi

|r0 −pi |4−b
d2ni

|r0 −ni |4−b
W (N)
b (p, n)

(5.5)

This means that the configuration integral of the TCP Coulomb system
confined to the domain D is mappable onto the one of the TCP Coulomb
system (with the same number of charged particles and at the same inverse
temperature b) confined to the new domain DŒ and being under an addi-
tional action of an external gravitational source with specific coupling
strength equal to 4−b. Since in the stability range of b < 2 the gravita-
tional coupling 4−b > 2 and the lhs of Eq. (5.5) is finite, the formalism must
ensure that, for any values of free complex parameters b and d such that
(b/d) ] r0, the gravitational source is localized outside of the domain DŒ in
order to prevent the divergence of the rhs of Eq. (5.5) due to the gravita-
tional collapse. According to the definition (4.1a), the relation between the
configuration integrals (5.5) also implies an analogous relation between the
grand partition functions,

X(z, b, D)=X(z̃, b, DŒ | r0) (5.6a)

z̃=z[(b−r0d)(b̄− r̄0d̄)]1−(b/4) (5.6b)

Taking for the domain a disk with its center at the origin, D=
{|r| [ R}, let us set b=R2 and d=r̄0 (r0 r̄0 ] R2), besides the already
chosen c=1 and a=r0, so that the Möbius conformal transformation (5.1)
takes the form

zŒ=
r0z+R2

z+r̄0
, z=

r̄0zŒ−R2

−zŒ+r0
(5.7)

It is straightforward to show that under this transformation the disk
zz̄ [ R2 maps onto a ‘‘dual’’ domain DŒ defined by the inequality

(R2−r0 r̄0)(R2−zŒz̄ Œ) [ 0 (5.8)

If the gravitational point is outside of the disk, i.e., r0 r̄0 > R2, the trans-
formation (5.7) maps the disk onto itself. Relation (5.5) results into
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F
R

0
D
N

i=1
d2pi d2ni W (N)

b (p, n)

=(r0 r̄0 −R2)N(4−b) F
R

0
D
N

i=1

d2pi

|r0 −pi |4−b
d2ni

|r0 −ni |4−b
W (N)
b (p, n) (5.9)

If r0 r̄0 < R2, the disk is mapped onto its complement in the two-dimensio-
nal space and Eq. (5.5) gives

F
R

0
D
N

i=1
d2pi d2ni W (N)

b (p, n)

=(R2−r0 r̄0)N(4−b) F
.

R
D
N

i=1

d2pi

|r0 −pi |4−b
d2ni

|r0 −ni |4−b
W(N)
b (p, n) (5.10)

In both cases, the gravitational source lies outside of the dual domain, as is
required by the condition of stability (see the comment in the above para-
graph). There exists a special Möbius transformation which maps the disk
directly onto a half-plane, but we will not discuss this case.

Although the present paragraph will not be used in the following,
let us remark that the self-duality of the disk system (5.9) produces a rela-
tion between the grand partition functions of type (5.6), with DŒ=D=disk
and z̃=z(r0 r̄0 −R2)2−(b/2). Since X(z, b, R) depends on b and the com-
bination z2R4−b, X(z̃, b, R|r0) will depend on b and the combination
z̃2R4−b/(r0 r̄0 −R2)4−b. Let x=|r0 |−R be the distance of the gravitational
point from the surface of the disk. The consequent ratio R/(2xR+x2)
diverges in the limit R Q., x Q 0. In this case, the asymptotic formula
(4.6) can be applied. When x is finite, the asymptotic formula (4.6) is
applicable only when one multiplies z by an appropriate R-dependent con-
stant via changing the zero reference energy of the gravitational potential.

We will now use the self-dual relation (5.9) to derive a new sum rule
(5.14) and its more detailed version (5.17) for the density structure function
Sn in the case of the disk geometry. First, we rewrite the rhs of (5.9) as
follows

F
R

0
D
N

i=1
d2pi d2ni
5 1−R2/(r0 r̄0)

(1−pi/r0)(1− p̄i/r̄0)
62−(b/2)

×5 1−R2/(r0 r̄0)
(1−ni/r0)(1− n̄i/r̄0)

62−(b/2)

W (N)
b (p, n) (5.11)

Then, since R2/(r0 r̄0) < 1, |pi/r0 | < 1 and |ni/r0 | < 1, we perform the large-
|r0 | expansion
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5 1−R2/(r0 r̄0)
(1−z/r0)(1− z̄/r̄0)

62−(b/2)

=1+12−
b

2
2 z

r0
+12−

b

2
2 z̄

r̄0
−12−

b

2
2 R2

r0 r̄0
+12−

b

2
22 zz̄

r0 r̄0
+·· ·

(5.12)

for each z={pi, ni}. The term of order (r0 r̄0)0 in (5.11) exactly reproduces
the lhs of (5.9), and the coefficients of higher-order terms in inverse powers
of r0 and r̄0 must be identically equal to zero. The terms 1/r0 and 1/r̄0 tri-
vially vanish. The 1/(r0 r̄0) term vanishes when

F
R

0
D
N

i=1
d2pi d2ni C

N

j, k=1
(pj+nj)(p̄k+n̄k) W (N)

b (p, n)

=
2NR2

2−(b/2)
F
R

0
D
N

i=1
d2pi d2ni W (N)

b (p, n) (5.13)

Within the grand-canonical formalism (4.1)–(4.3), the equality (5.13) is
equivalent to

F
R

0
d2r F

R

0
d2rŒ r · rŒS (R)

n (r, rŒ)=
R2

2−(b/2)
z
“

“z
ln X(z, b, R) (5.14)

Everything that has been done in the case of the configuration integral
can be adapted to the particle density. Let us ‘‘rotate’’ the Möbius trans-
formation (5.7) around the origin by the multiplication factor (r̄0/r0) in
order to obtain the identity zŒ=z in the limit |r0 | Q., and denote by a the
ratio R/r0 whose absolute value is smaller than 1,

zŒ=
z+aR

1+(āz/R)
(5.15)

For a given point r=(r, r̄) in the interior of the disk, the previously
developed formalism implies

F
R

0
D
N

i=1
d2pi d2ni C

N

j=1
[d(r−pj)+d(r−nj)] W (N)

b (p, n)

=
(1−aā)2

(1+ār/R)2 (1+ar̄/R)2 F
R

0
D
N

i=1
d2pi
5 1−aā

(1− āpi/R)(1−ap̄i/R)
62−(b/2)

d2ni

×5 1−aā
(1− āni/R)(1−an̄i/R)

62−(b/2)

C
N

j=1
[d(rŒ−pj)+d(rŒ−nj)] W (N)

b (p, n)
(5.16)
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When one expands the rhs of (5.16) in powers of a=ax+iay, |a| < 1, the
requirement of the nullity of the coefficients attached to ax and ay leads to
the relation

(4−b) F
R

0
d2rŒ r · rŒS (R)

n (r, rŒ)=4r2n(r, R)+(r2−R2) r
“

“r
n(r, R) (5.17)

The new sum rule (5.14) results from the more detailed Eq. (5.17) when one
integrates >R0 d2r both sides of the latter, then uses an integration by parts
and finally applies the equality (4.4a).

This new sum rule (5.17) has a consequence for the density near the
boundary. Let us divide Eq. (5.17) by |r|, and move the origin to the
boundary via the coordinate transformation r=R−x described in Section 4.
Then, using Eq. (4.19), and in the R Q. limit, we find after some simple
algebra that

nR(x)=n(x)−
1

2R
3(4−b) F

.

0
dxŒ xŒ F

.

−.
dy Sn(x, xŒ; y)

−4xn(x)−x2 “n(x)
“x
4+·· · (5.18)

This formula determines the leading correction of the density nR(x), at a
fixed distance x from the wall, with respect to its asymptotic R Q. value
n(x) due to the curvature of the confining disk domain. The quantities on
the rhs of (5.18) are the ones evaluated for the rectilinear hard wall.

The asymptotic formula (5.18) can be explicitly checked at the
boundary, where it gives

nR(0)=n(0)−
4−b
2R

F
.

0
dx x F

.

−.
dy Sn(0, x; y)+· · · (5.19)

Multiplying Eq. (4.18) by x, integrating then over x from 0 to . and per-
forming an integration by parts, one finds

−F
.

0
dx[n(x)−n]=F

.

0
dx x F

.

−.
dy[Sn(0, x; y)−n(x) d(x) d(y)] (5.20)

On the other hand, according to the relation (4.4a), it holds for the disk

F
R

0
d2r[n(r, R)−n]=z

“ ln X
“z

−npR2 (5.21)
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Assuming the large-R expansion (4.6) and passing to the boundary-distance
variable x=R−r, Eq. (5.21) takes the form

2p F
R

0
dx(R−x)[nR(x)−n]=−(2pR) z

“(bc)
“z

−
1

12(1−(b/4))
+· · ·

(5.22)

In the limit R Q., this equation implies the obvious boundary relation

F
.

0
dx[n(x)−n]=−z

“(bc)
“z

(5.23)

Taking into account the z-dependence of bc (4.8) in (5.23) and considering
the previously derived relations (5.19) and (5.20), large-R asymptotics
(4.15) is reproduced correctly up to the (1/R)-term, which confirms the
validity of (5.19).

The asymptotic formula (5.18) implies a generalization of the second
moment density sum rule (1.23) to the case of a rectilinear wall. Indeed, the
local version of the compressibility sum rule (4.20) can be used for rewrit-
ing (5.18) as

nR(x)=n(x)−
1

2R
3(4−b) F

.

0
dxŒ(xŒ−x) F

.

−.
dy Sn(x, xŒ; y)+x2 “n(x)

“x
4+·· ·

(5.24)

We will suppose that the half-infinite Coulomb system has good screening
properties into the bulk, i.e., [n(x)−n] decays faster than any inverse-
power law as x Q. and all moments >.0 dx x i[n(x)−n] exist. From
Eqs. (5.22) and (5.23), one then gets in the limit of large R

2pR F
.

0
dx[nR(x)−n(x)]−2p F

.

0
dx x[n(x)−n]=−

1
12(1−(b/4))

(5.25)

Inserting (5.24) into (5.25) and after some algebra we arrive at

F
.

0
dx F

.

0
dxŒ(xŒ−x) F

.

−.
dy Sn(x, xŒ; y)=

1
48p(1−(b/4))2 (5.26)

Actually, it can be shown that the boundary sum rule (5.26) can be
derived directly from the second-moment sum rule in the bulk (1.23) by
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using a simple assumption. Indeed, Sn(x, xŒ; y) can be decomposed as the
sum of the bulk structure factor plus a surface term:

Sn(x, xŒ; y)=Sbulk
n (r)+S surface

n (x, xŒ; y) (5.27)

where r=[(x−xŒ)2+y2]1/2 and Sbulk
n (r) is the bulk density structure factor

appearing in (1.23) [(5.27) is just a definition of S surface
n ]. When this

decomposition is used in the lhs of (5.26), assuming that S surface
n (x, xŒ; y) has

a fast decay when x or xŒ or both go to infinity (see for instance the explicit
expressions in the weak-coupling or b=2 cases considered in Sections 3.1
and 3.2), the corresponding integral is absolutely convergent, the order
of the integrations on x and xŒ can be freely interchanged, and since
(x−xŒ) S surface

n (x, xŒ; y) is odd under the interchange of x and xŒ, this
integral vanishes. This reasoning however does not apply to the contribu-
tion of the bulk structure factor which does not decay to 0 when both x
and xŒ go to infinity for a fixed value of x−xŒ; the corresponding integral is
not absolutely convergent, and the order of the integrations cannot be
changed. Thus, only the bulk part of Sn contributes to the lhs I of (5.26)
which can be rewritten as

I=F
.

0
dx F

.

−x
ds s F

.

−.
dy Sbulk

n (|s|; y) (5.28)

where we have used the integration variable s=xŒ−x rather than xŒ and
made explicit that Sbulk

n depends on x and xŒ only through |s|. Performing
the integration on x by parts gives

I=x F
.

−x
ds s F

.

−.
dy Sbulk

n (|s|; y)|x=.x=0 +F
.

0
dx F

.

−.
dy x2Sbulk

n (|x|; y)
(5.29)

Because Sbulk
n has a fast (exponential) decay at infinity, the first term in the

rhs of (5.29) vanishes. Since Sbulk
n (|x|; y) is a function of r=(x2+y2)1/2

only, I is 1/4 of the lhs of (1.23), and (1.23) results into (5.26). It should be
noted that the above derivation of the boundary sum rule (5.26) still holds
for an arbitrary value of the wall dielectric constant EW, including the
special cases EW=0 and EW=..

6. UNIVERSAL FINITE-SIZE CORRECTION FOR THE DISK

In most considerations of the previous two sections, we have assumed
the validity of the large-R expansion of ln X (4.6) for the disk, in particular
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the value −1/6 of the coefficient of the universal ln R-term. Here, we
prove this assumption.

Using the formula |r− rŒ|2=|r|2+|rŒ|2−2r · rŒ, we write

F
R

0
d2r F

R

0
d2rŒ |r− rŒ|2 S (R)

n (r, rŒ)

=2z
“

“z
5FR

0
d2r |r|2 n(r, R)−

R2

2−(b/2)
ln X6 (6.1)

where we have used the relation (4.4b) and the new sum rule (5.14). Let us
consider the large-R expansion (4.6) in a general form

ln X=(pR2)11−
b

4
2 n−(2pR) bc+f (6.2)

where n 3 z1/(1−b/4), bc3 z1/(2−b/2) and f is an as-yet-undetermined func-
tion of b and the combination z2R4−b. The representation (6.2) when
combined with (5.21) implies

bc=
1−(b/4)
pR
3z “f
“z

−F
R

0
d2r[n(r, R)−n]4 (6.3)

Substituting bc in (6.2) by the expression (6.3) and then inserting ln X into
(6.1), one obtains

1
pR2 F

R

0
d2r F

R

0
d2rŒ |r− rŒ|2 S (R)

n (r, rŒ)

=−
2
p

z
“

“z
F
R

0
d2r 11−

r2

R2
2[n(r, R)−n]−

1
p(1−(b/4))

z
“

“z
f+

2
p
1z “
“z
22 f

(6.4)

This equation, which is exact for an arbitrary disk radius R, will now be
analyzed in the limit R Q.. In that limit, since S (R)

n (r, rŒ) decays along the
boundary like 1/|r− rŒ|4 (see Section 3), there is no relevant surface contri-
bution to the integral on the lhs of (6.4), and we can make use of the bulk
sum rule (1.23) derived in ref. 25,

lim
RQ.

1
pR2 F

R

0
d2r F

R

0
d2rŒ |r− rŒ|2 S (R)

n (r, rŒ)=
1

12p(1−(b/4))2 (6.5)
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As concerns the rhs of (6.4), the unknown integral over the disk area can
be represented in the x=R−r coordinate as

F
R

0
d2r 11−

r2

R2
2[n(r, R)−n]=4p F

R

0
dx x 11−

x
R
211+

x
2R
2[nR(x)−n]

(6.6)

In the limit R Q., due to good screening properties of the plasma, only
the term 3 >.0 dx x[n(x)−n] survives. Based on the scaling analysis of
Section 3, since n(x)=nḡ(`n x), this integral is dimensionless, and there-
fore its derivative with respect to z vanishes. Consequently, without the
integral on the rhs of Eq. (6.4), the solution of that equation combined
with (6.5) reads

f=−
1
6
ln(Rz1/(2−b/2))+const+·· · (6.7)

in full agreement with the expected universal large-R behavior (4.6).

7. CONCLUDING REMARKS

The peculiarities of the charge correlation in a Coulomb fluid are
determined by the screening effect caused by the long-ranged tail of the
Coulomb potential. The density correlation function in a charge-symme-
trical two-component plasma, decoupled from the charge one at the level of
the OZ equation [see relations (2.1)], does not feel this tail directly. Yet,
the density correlation bears some similarity with the charge correlation.
Although the density correlation decays always faster than the charge one,
it still exhibits an algebraically slow decay ’ |y|−2n (3.4) at large distances
|y| along a rectilinear hard wall in any dimension n. An analogous pheno-
menon for the charge correlation, which decays like ’ |y|−n (3.3), is related
to an asymmetry of the screening cloud near the wall.

In this paper, we have concentrated mainly on the two-dimensional
TCP of pointlike charges. The form-factor analysis of the equivalent sine-
Gordon model was done in the bulk case. In contrast to the charge corre-
lation, the density one exhibits a discontinuity of the slope of the correla-
tion length, namely at point b=1 [see relations (2.31) and (2.32)]. At the
collapse point b=2, as seen in Eqs. (2.10) and (2.11), the charge and
density correlation lengths become the same and the difference in the
asymptotic decay is only in the inverse-power law prefactors.

The TCP in contact with a rectilinear hard wall of dielectric constant
EW was mapped onto an integrable boundary sine-Gordon model in two
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cases: EW Q. (ideal metal wall, Dirichlet boundary condition) (5) and
EW=0 (ideal dielectric wall, Neumann boundary condition). (6) Interes-
tingly, just in these two cases the charge and density correlation functions
decay exponentially also along the boundary. The next potentially inte-
grable case corresponds to the plain hard wall with EW=1: at least, the
explicit solution is available at the free-fermion point. (9) For this case, we
have suggested an explicit form of the asymptotic characteristics along the
wall, fr(x, xŒ) (3.15) and fn(x, xŒ) (3.16), as a natural interpolation
between the exact results in the bQ 0 limit and at b=2. The universal
value of the prefactor =1/(2p2) in fn deserves attention. To check the
validity of our conjectures, one should go beyond the Debye–Hückel limit.

The scaling analysis of Section 4 leads to a new local version of the
compressibility sum rule in the presence of a hard wall (4.20).

In the crucial Section 5, a symmetry of the TCP confined to a disk
with respect to the Möbius conformal transformation of particle coordi-
nates, which induces a gravitational source point interacting with the par-
ticles, is established. This symmetry is of interest by itself: it produces a
path between the pure Coulomb system and the one under the action of a
gravitational point. The gravitational point acts in the same way on posi-
tive and negative charges, so that the total particle density is relevant. As a
result, the new sum rule (5.14) for the density correlation function and its
local version (5.17) are derived for the disk geometry of the Coulomb
system. The finite-size formula (5.18) for the particle density at a fixed dis-
tance from the wall and the boundary version (5.26) of the bulk second
moment of Sn (1.23) also deserve attention.

The new density sum rule (5.14) is used in Section 6 to derive the uni-
versal finite-size correction term of the grand potential for the disk geometry.
We would like to stress a fundamental difference between the derivation of
the universal finite-size correction term for a system which is finite in each
direction (a disk or a sphere, a density sum rule is relevant) and for a
system which is infinite at least in one direction (a strip or a n-dimensional
slab, a charge sum rule is relevant (33, 34)).

In most cases, we have restricted ourselves to the symmetrical-charge
TCP and EW=1 in order to maintain the clarity of presentation. The
extension of the formalism to the asymmetric TCP and arbitrary EW is
usually straightforward.
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